Saturday, August 9, 2014

August 3, 2014




 Binary



In mathematics and digital electronics, a binary number is a number expressed in the binary numeral system, or base-2 numeral system, which represents numeric values using two different symbols: typically 0 (zero) and 1 (one). More specifically, the usualbase-2 system is a positional notation with a radix of 2. Because of its straightforward implementation in digital electronic circuitryusing logic gates, the binary system is used internally by almost all modern computers and computer-based devices such as mobile phones. Each digit is referred to as a bit.


Decimal counting

Decimal counting uses the ten symbols 0 through 9. Counting primarily involves incremental manipulation of the "low-order" digit, or the rightmost digit, often called the "first digit". When the available symbols for the low-order digit are exhausted, the next-higher-order digit (located one position to the left) is incremented, and counting in the low-order digit starts over at 0. In decimal, counting proceeds like so:
000, 001, 002, ... 007, 008, 009, (rightmost digit starts over, and next digit is incremented)
010, 011, 012, ...
   ...
090, 091, 092, ... 097, 098, 099, (rightmost two digits start over, and next digit is incremented)
100, 101, 102, ...
After a digit reaches 9, an increment resets it to 0 but also causes an increment of the next digit to the left.

Binary counting

In binary, counting follows similar procedure, except that only the two symbols 0 and 1 are used. Thus, after a digit reaches 1 in binary, an increment resets it to 0 but also causes an increment of the next digit to the left:
0000,
0001, (rightmost digit starts over, and next digit is incremented)
0010, 0011, (rightmost two digits start over, and next digit is incremented)
0100, 0101, 0110, 0111, (rightmost three digits start over, and the next digit is incremented)
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111 ...
Since binary is a base-2 system, each digit represents an increasing power of 2, with the rightmost digit representing 20, the next representing 21, then 22, and so on. To determine the decimal representation of a binary number simply take the sum of the products of the binary digits and the powers of 2 which they represent. For example, the binary number 100101 is converted to decimal form as follows:
1001012 = [ ( 1 ) × 25 ] + [ ( 0 ) × 24 ] + [ ( 0 ) × 23 ] + [ ( 1 ) × 22 ] + [ ( 0 ) × 21 ] + [ ( 1 ) × 20 ]
1001012 = [ 1 × 32 ] + [ 0 × 16 ] + [ 0 × 8 ] + [ 1 × 4 ] + [ 0 × 2 ] + [ 1 × 1 ]
1001012 = 3710
To create higher numbers, additional digits are simply added to the left side of the binary representation.

No comments:

Post a Comment